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Abstract— Generalized delta learning rule is very often used in multilayer feed forward neural networks for accomplish the task of pattern
mapping. A backpropagation learning network is expected to generalize from the training set data, so that the network can be used to
determine the output for a new test input. This network uses the gradient decent technique to train the network for generalization. It evolves
the iterative procedure for minimization of an error function, with adjustments to the weights being made in a sequence of steps. The first
derivate of the error with respect to the weights identifies the local error surface in decent directions. Therefore for every different presented
pattern, the network exhibits the different local error and the weights modify in order to minimize the current local error. In this paper, we
are providing the generalized mathematical formulation for the second derivative of the error function for the arbitrary feed forward neural
network topology. The new global error point can evaluate with the help of current global error and the current minimized local error. The
weight modification process accomplishes two times, one for the present local error and second time for the current global error. The
proposed method indicates that the weights, these are determines from the minimization of global error are more optimal with respect to
the conventional gradient decent approaches.

Index Terms — Generalization, Pattern mapping networks, Back propagation learning network, decent gradient, and Conjugate descent.
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1  INTRODUCTION
 Generalization is different from interpolation, since in generaliza-
tion the network is expected to model the unknown system or
function from which the training set data has been obtained. The
problem of determination of weights from the training set data is
known as the loading problem [1]. The generalization perfor-
mance depends on the size and complexity of the training set, be-
sides the architecture of the network and the complexity of the
problem [2]. Therefore, if the performance for the test data is as
good as for the training data, then the network is said to have
generalized from the training data. The feed forward neural net-
work architecture is  more commonly used to perform the task of
generalization with pattern mapping network. In this pattern
mapping network for generalization the algorithm for modifying
the weights between the different interconnected layers is usually
known as back propagation learning technique [3]. This algorithm
is a supervised learning method for multi layered feed forward
neural networks. It is essentially a gradient descent local optimiza-
tion technique which involves backward error correction of net-
work weights. It evaluates the derivatives of the error function
with respect to weight in weight space for any given presented
input pattern from the given training set [4]. It involves the itera-
tive procedure for minimization of an error function, with adjust-
ment to the weights being made in a sequence of steps. In each
steps we can distinguish between two distinct stages. In the first
stage, the derivatives of the error function with respect to the
weights must be evaluated. In the second stage, the derivatives
are then used to compute the adjustment to be made to the
weights [10]. The first stage process, namely the propagation of
errors backward through the network in order to evaluate deriva-

tives, can be applied to many other kinds of network and not just
the multi layer perceptron. It can also be applied to the error func-
tions other than just the simple sum-of-squares, and the evalua-
tion of other derivatives such as the Jacobin and Hessian metrics
[11] and also, the second stage of weight adjustment with the cal-
culated derivatives can be tackled using a verity of optimization
schemes.
 Despite the general success of back-propagation method in the
learning process, several major deficiencies are still needed to be
solved like convergence guarantee and convergence rate, nature
of error, ill posing and over training. The convergence rate of
back-propagation is very low and hence it becomes unsuitable for
large problems. Furthermore, the convergence behavior of the
back-propagation algorithm depends on the choice of initial val-
ues of connection weights and other parameters used in the algo-
rithm such as the learning rate and momentum term. There are
various other enhancements and modifications were also present-
ed by different researchers [5-7] for improving the training effi-
ciency of neural network based algorithms by incorporating the
selection of dynamic learning rate and momentum [8-9]. The im-
provement in performance of back propagation is further consider
with the evaluation of the Jacobin matrix [12], whose elements are
given by the derivatives of the network outputs with respect to
the inputs. The Jacobin matrix provides a measure of the local
sensitivity of the outputs to change in each of the input variables.
In general, the network mapping represented by a trained neural
network will be non-linear, and so the elements of the Jacobin ma-
trix will not be constant but depends on the particular input vec-
tor used.
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The back propagated error is further used to evaluate the second
derivatives of the instantaneous squared error. These derivatives
form the elements of the Hessian matrix [13], which involves the
basis of a fast procedure for re-training a feed forward network
following a small change in the training data. Thus, due to the
several applications of the Hessian matrix, there is various ap-
proximation schemes have been used to evaluate it like the diago-
nal approximation [14] outer product approximation and inverse
Hessian [15]. The exact evaluation of the Hessian matrix has also
proposed, which is valid for a network of arbitrary feed forward
topology. This method is based on an extension of the technique
of the back propagation used to evaluate the first derivatives, and
shares the many desirable features of it [16]. The second derivative
of the error with respect to weight is obtained as conjugate de-
scent method [17, 18]. The further improvement in conjugate de-
scent method is also considered [19] and in the family of Quasi –
Newton algorithms [20]. Further, the influence of gain was studies
by few researchers [21 – 23]. The gain parameter controls the
steepness of the activation function. It has been shown that a larg-
er gain value has an equivalent effect of increasing the learning
rate. Recently it has been suggested that a simple modification to
the initial search direction, i.e. the gradient of error with respect to
weights, can substantially improve the training efficiency. It was
discovered that if the gradient based search direction is locally
modified by a gain value used in the activation function of the
corresponding node, significantly improvements in the conver-
gence rates can be achieved [24].
In this present paper, we are considering a multilayer fed forward
neural network with a training set of English alphabets. This neu-
ral network is trained for good generalization with generalized
second derivative delta learning rule for the stochastic error. This
random error is back propagated among the units of hidden lay-
ers, for the modification of the connection weights in order to min-
imize the error. This modification in the weights is preformed
with generalized second derivative of error with respect to
weights between hidden layer and output layer and also in be-
tween input and hidden layer. The neural network is trained for
capturing the generalized implicit functional relationship between
input and output pattern pairs. Thus, it is expected from the adap-
tive neural network is that it could able to recognize the individu-
al characters from the handwritten English word of three letters.
Hence, the proposed method is providing the generalized way for
minimization of optimal global error which consists with instan-
taneous unknown minimum local errors.

2. FEED FORWARD NEURAL NETWORK WITH DELTA LEARN-

ING RULE

A multi layer feed forward neural networks normally consist with
the input, output and hidden layers. The processing units in the
output layer and hidden layers usually contain non linear differ-
entiable output function and the units of input layer use the linear
output function. If the units in the hidden layers and in the output
layer are non-linear, then the number of unknown weights or
connection strengths depend on the number of units in the hidden
layers, besides the number of units in the input and the output
layers. Obviously, the network is suppose to use for generaliza-
tion i.e. pattern mapping. Thus, the pattern mapping, problem

involves determining these weights, for the given training input-
output pattern pairs as shown in figure 1.

Figure 1: Architecture of the multi layer feed forward Neural
Network

So far, in order to determine the weights in supervisory mode it is
necessary to know the error between the derived or expected out-
put and the actual output of the network for a given training pat-
tern. We know the desired output only for the units in the final
output layer, not for the units in the hidden layers. Thus, the same
error of  output layer is  back propagated for the hidden layers to
guide the updating or modification in the weights. Therefore, the
instantaneous error can minimize by updating the weights be-
tween the input layer to hidden layer and hidden to output layer.
Thus, we use the approach of gradient descent along the error
surface in the weights space to adjust the weights to arrive at the
optimum weight vector. The error is defined as the squared dif-
ference between the desired output and the actual output ob-
tained at the output layer of the network due to application of an
input pattern from the given input-output pattern pairs. The out-
put has calculated using the current setting of the weights in all
the layers as follows:
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ik WZfy                                                           (2.1)

Where f   the output function, iZ is  the output of  hid-
den layer and kiW  is the weight between hidden and
output layer.
And , also for hidden layer’s processing unit output ;
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Where jX the output of input is layer and jiV  is  the
weight between input and hidden layer.
The instantaneous squared error for the lth pattern can
represent as:
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l ytE                                                          (2.3)

Where kt   is desired output.
Thus, for each input-output pattern pair the network has the dif-
ferent error. So, we have the local errors for the given input-
output pattern pairs.
The weights are updated to minimize the current local error or
unknown instantaneous square error for each presented input-
output pattern pair. Thus, the optimum weights may be obtained
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if the weights are adjusted in such a way that the gradient descent
is  made  along  the  total  error  surface. The error minimization
can be shown as;

ikkk
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E )(][ '                                          (2.4)

 Weights modifications on the hidden layer can be de-
fined as;
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Thus the weight updates for output unit can be repre-
sented as;

)1()()()1( tWtWtWtW kikiikik           (2.7)

Where
)(tWik  is the state of weight matrix at iteration t

)1(tWik  is the state of weight matrix at next iteration
)1(tWik  is the state of weight matrix at previous itera-

tion.
)(tW ki  is current change/ modification in weight ma-

trix and  is standard momentum variable to accelerate
learning process.
This variable depends on the learning rate of the net-
work. As the network yields the set learning rate the
momentum variable tends to accelerate the process.
In this process the weights are updating on each step for the in-
stantaneous local unknown square error instead of least mean
error or total error or global error for the entire training set. The
determination of the total error surface cannot be known, because
the set of input-output pattern pairs is large and continuous.
Thus, the gradient descent on each step is obtained along the in-
stantaneous local error surface. Hence the weights are now ad-
justed in a manner that the network is leading towards the mini-
ma of local error surface for the presented input-output pattern
pair. Therefore to obtain the optimum weight vector for the given
training set, the weights must modify in a manner that the net-
work should leads towards the minimum of global error i.e. the
expected value of the error function for all the training samples.
As we can observe from the figure 1, that the output vector is of k
dimension and so for we have the k-dimensional error surface.
The network will lead towards the descent gradient of k- dimen-
sional error surface. Now, another input-output pattern pair i.e. l
+ 1 represents and may have another error surface which is differ-
ent from the first one. Therefore the weights of the network will
further modified as per equation (2.5) for the error of l + 1  pattern
i.e. El+  1 . Hence, this process will continue for every presented
pattern pair and we may have the different error surfaces. Only
one error surface at a one time will activate for the presented in-

put pattern. It is easy to interpret that, every time the network
tries to minimize the current local unknown error. Now, it is clear
that  in descent gradient learning rule weights of  the network are
updating only on the basis of local error rather than the global
error and in order to obtain the generalized behavior the updating
in the weights are required along the descent gradient of the glob-
al error or least mean square error for the entire training set.
Hence, it can realize that to obtain the good generalization for the
given input output pattern pairs the weight updating should take
place for the global error rather than the local error surfaces.
Therefore, we can visualize a k- dimensional error surface in
which we have different descent gradient corresponding to differ-
ent input output pattern pairs, but only one descent gradient will
activate at a one time. So, it is difficult to keep the entire local de-
scent gradients and to search for the global one. Instead of this, we
can keep the different minima points of the error corresponding to
different input output pattern pairs. These minima points will
distribute in the entire error surface and to trace the global mini-
ma from these local minimum points will easy and convenient.
Thus, to accomplish the determination of local minimum points,
we can consider the second derivative of descent gradient of the
local errors.

3.  GENERALIZED SECOND DERIVATIVE FOR FEED FORWARD
MULTILAYER NEURAL NETWORKS:

In this section we present a generalized method for obtaining the
second derivative of the descent gradient of global error with re-
spect to weight in weight space for the good generalized behavior
of the feed forward multilayer neural network for the given train-
ing set.  Therefore to obtain the optimal weight vector for the feed
forward neural network, the weight modification should perform
for the global minimum point among the various local error min-
ima points. Thus, the modification in the weight vector in each
step is for minimizing first the local instantaneous square error
and in second step is to minimize the current global or least mean
square error. Now, we illustrate the generalized method for de-
termining the second derivative of instantaneous error and further
for the current global error correspond to presented input-output
pattern pairs on each step. The error can obtain for the feed for-
ward neural network as shown in fig (1) for the lth pattern from
the equation (2.3) and decent gradient for the instantaneous
square error as obtained from the equation (2.4). Now from these
two equations we have;
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Now, we consider the second derivative for the error as [23];
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We further extend the derivative term from the equation (3.2) as;
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Thus, the weight adjustment can obtain corresponding to the min-
ima point of error lE as;
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Correspondingly the new weight between the processing units of
hidden and output layer can obtain as;
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Now, we determine the weight modification between the pro-
cessing units of input layer and hidden layer of feed forward neu-
ral network as shown in fig.1, in order to minimize the same local
error El and to obtain the local minima point of the error. Again
we will consider the second derivative of the error with respect to
the weight Wji as;

2

2

ji

l

ji W
EW …….(3.7)

So, on illustration of the term 2

2

ji

l

W
E

 we have;

].[)(2

2

ji

j

j

l

jiji

l

jiji

l

W
y

y
E

WW
E

WW
E

Where
I

i

l
ijij aWy

1
. (activation from the hidden layer’s unit)

And )( l
i

l
i afa is the applied input on the ith unit of input layer.

Hence, 2
2

2

).(].[].[ l
i

j

l
l
i

ji

l

j

l
i

j

l

ji

a
y
Ea

W
E

y
a

y
E

W
 ,

 since 0
ji

l
i

W
a

      ……..(3.8)

We further expand the derivative term from the equation (3.8) as;
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Now, from equation (3.8) we have,
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Hence, from equation (3.7) and (3.11) we have;
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Thus, the new weights between the processing units of input layer
and hidden layer can obtain as;
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So that, here we have obtained the weight modification for the
feed forward neural network in order to minimize the local error
for the presented input-output pattern pair. The second derivative
of local error has been calculated separately with respect to the
weights between hidden and output layers, input and hidden lay-
er. Now, we are determining the second derivatives of the same
local error with respect to the weights of input and hidden layer
and hidden and output layer in combination. Thus, again we con-
sider the local error and the gradient descent of error surface in
weight space as;
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Where 0hW represents the one weight from each hidden and out-
put layer.
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Hence, from the above mentioned expression we can obtain
weight modification in terms of second derivative of error with
respect to weights of the hidden-input layer and output-hidden
layer. The weight modification has been obtained for the units of
hidden layer in the terms of back propagated error and for the
units of output layer in the terms of local error generated from the
units of output layer. The weight modification has also been ob-
tained for the one weight from the each hidden and output layer.
Thus, for each input–output pattern pair of the training set the
weight vector will incrementally update according to the learning
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equation i.e.
WtWtW )()1( ………….(3.16).

This process will continue for the each presented input- output
pattern pairs. Here we have obtained the minimum point of each
local instantaneous squared error by determining its second de-
rivative.  In  this  way,  we  have  the  collection  of  local  error  mini-
mum points in k-dimensional error surface. Now we can deter-
mine the global minimum point by taking the square mean of cur-
rent local error point with the current square mean of the error
point i.e. the current global or total error point.

Let, initialize the global error with zero i.e. min
gE = 0 and deter-

mine the local instantaneous error point correspond to the pre-
sented input – output pattern pair i.e. ( lll Eba ), '' . The current
global error point can determine as;

2/))(( 2minmin l
gg EEE  ……………………….(3.17)

Now, the current weight of the network will further update as per
the equation (3.5), (3.12) & (3.15) to minimize the current global
error min

gE .
This process will continue for all the presented input-output pat-
tern pairs of given training set and every time once the second
derivative of instantaneous local error for the presented pair has
obtained the min

gE  will modify. Thus, the minimum global error
will  change  with  every  current  unknown  second  derivative  in
descent direction for instantaneous local error, and the incremen-
tal weight update will preformed to minimize the current global
error. Thus the process of updating of weight will accomplish two
times. First time is for the second derivative of local error and fur-
thers the second derivative of current global error. So that, in this
approach the training has performed to minimize the global error.
The global error has obtained in iterative dynamic fashion with
the second derivative of instantaneous local errors. Hence, we
have obtained the optimal weight vector for the multi layer feed
forward neural network to capture generalize implicit functional
relationship between input- output pattern pairs of given training
set.

4  SIMULATION DESIGN AND RESULT:
In this simulation the performance of multi layer feed forward

neural network trained with generalized second derivative of
global error learning rule is analyzed as the good generalization
for the given training set. The training set consists with English
alphabets in binary form as input pattern with corresponding bi-
nary output pattern information. The generalized second deriva-
tive of instantaneous error is used to minimize the current global
error which makes the network more convergent and shows the
remarkable enhancement in the performance. The 1000 test sam-
ple words are presented to the vertical segmentation program
which  is  designed  in  MATLAB and  based  on  portion  of  average
height of the words. These segmented characters are clubbed to-
gether after binarization to form training patterns for neural net-
work. The proposed generalized second derivative delta learning
rule is minimizing the current global error for each presented in-

put output pattern pairs. The network is designed to learn its be-
havior by presenting each one of the 10 samples 100 times thus
achieved 1000 trails. The results indicate the significant improve-
ment in the performance of the network. To accomplish the simu-
lation work we consider the feed forward neural network system
which consists of 150x10x26 neurons in input, hidden and output
layers respectively. 1000 trails have been conducted with applying
different kinds of constraints for the segmentation. The constraints
are based on the height of the word. The segmented characters are
resized onto 15x10 binary matrixes and are exposed to 150 input
neurons. The 26 output neurons correspond to 26 letters of Eng-
lish alphabet. The following steps have been involved for the ex-
periments [22]:

4.1 Preprocessing: This step is considered as mandatory before
segmentation and analyzing the optimal performance of the neu-
ral network for recognition. All hand written words are scanned
into gray scale images. Each word is fitted into a rectangle box in
order to be extracted from the document and this way they can
contribute into the calculation of height and width.

4.2 The segmentation Process: The observed average height

and width ( avgH
 and avgW

 )  make the basis for implementation
of segmentation process. It is well observed that in cursive hand
written text, the character are connected to each other to form a

word at a height less than half of the avgH
.  The following sam-

ples depict the same phenomenon:

      Figure 2: Connections between the characters of the cur-
sive word.

  Here, we are considering the
avgH*

2
1

 (Average of height) for
deciding segmentation points. Each word is traced vertically after
converting the gray scale image into binary matrix. This binariza-
tion is done using logical operation on gray intensity level as:

I = (I >= Level) Here 0<= Level <= 1 is the threshold parameter.
This Level is based on the gray-scale intensity of the text in docu-
ment. More intensity leads to the more threshold value. The
judgment of segmentation point is based on following algorithm:

Algorithm: VerticalSegment (I)

1: Repeat for each column ( i ) in image matrix I starting from I
(0, 0) position.

2: Repeat for each row ( j ) element in column.
3. Check if I (i, j ) is  0  (black  pixel)  and  row  number  ( j )  >

Height / 2  then
    3.1 Check if  (column ( i )  < 5 ) OR  ( i - last segmentation

column  < 5 ) then
            Process the next element.
     3.2 Else  Store this segmentation point (column number i )
4. If no black pixel found in entire column then it is a segmen-
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tation point
5.  Cut the image in correspondence to segmentation points

identified.

Figure 3: Vertical Segmentation Technique and Binary character

4.3 Reshape and Resizing of Characters for pattern creation:
Every segmented character is first changed into a binary matrix
and then resized to 15x10 matrixes using nearest neighborhood
interpolation and reshaped to a 150x1 logical vector so that it can
be presented to the network for learning. Such characters are
clubbed together in a matrix of size (150, 26) to form the training
pattern set.

4.4 Experimental Results: To analyze the performance of feed-
forward neural network with conjugate descent for the pattern
recognition problem the following parameters have been used in
all the experiments:

Sr.
No.

Parameter Name Value

1 Learning/ Training Goal for
entire network

0.0001

2 Acceptable global Error 0.0001
3 Momentum Term ( ) 0.89
4 Maximum Epochs 50000
5 Initial Weights and biased

term values
Randomly gener-

ated values between
0 and 1

      Table 1: Parameters and their values used in all learning
processes

After the segmentation technique as specified by the algorithm
the following number of patterns have been obtained for the train-
ing

Segmenta-
tion Constraint

Correctly
Segmented
Words (Out of
1000)

Incorrect
Segmented
Words (Out of
1000)

Success
Percentage

     Height / 2         718       282 71.8 %

         Table 2: Results of Vertical Segmentation Technique

Thus, out of 1000 words sample the 718 words have been cor-
rectly segmented and used as the patterns for the training of neu-
ral network. The neural network has been trained with conven-
tional descent gradient method and from the proposed general-
ized second derivative of instantaneous error method with dy-
namic mean of the global error. The performance of the network
has been analysis. The values of gradient descent and proposed
generalized second derivative method are computed for each trail

of learning and the mean value of all the trails of their perfor-
mance has been used as the final result for the representation. The
following table and graphs are exhibiting this performance analy-
sis:

                        Table 3:  Comparison of gradient values and
Error of the network

0
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2000

2500
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3500
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Sample

Ep
oc

hs

Classical Method
Second derivative method

  Figure 4:  The Comparison chart for gradient value between
Classical method and generalized second derivative methods

The results in the table 3 are representing the epochs of training
and the presence of error in the network for classical gradient de-
scent method and proposed generalized second derivative descent
gradient method. The results shown here are the mean of all the
trials. The proposed generalized second derivative descent gradi-
ent method for the handwritten words recognition is showing the
remarkable enhancement in the performance.

5. CONCLUSION:

This paper is following the approach of generalized second de-
rivative of instantaneous squared error for its minimization in the
weight space corresponds to the presented input-output pattern
pairs  to  exhibit  a  good  generalized  behavior  to  the  fed  forward
neural network for the given training set. The weight modification
had consider for the hidden & output layer and inputs & hidden
layer, beside this the second derivative of the local errors has ob-
tained with respect to both the weights i.e. hidden and output
layer. The following observations were made for the entire dis-
cussed procedure.

1. The generalized second derivative gradient method gener-
ates the minimum of unknown instantaneous error in K-
dimensional error surface. The weights have modified for each of
this error. These modifications in the weights were obtained with

      Sample

Epoch Network Error

 Classical
Method

Second
derivative
Method

 Classi-
cal Method

Second
derivative
Method

 Sample1 3015 2197 0 0

    Sample2 3178 2190 0 0

     Sample3 3072 2252 0 0

     Sample4 2852 1865 0.00343787 0
   Sample5 2971 2857 0.0787574 0.000491716
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the generalized second derivative of this instantaneous square
error. The generalized second derivative of the error has obtain
with respect to the weights for output layer & hidden layer indi-
vidually and also in combination.

2. The proposed method for good generalization is obtaining
the  point  of  minimum local  error  for  every  input  pattern  during
the training in each step. Once the instantaneous local error mini-
mum has obtained, the square mean of this local error minimum
with current global error has obtained. This exhibits the current
global dynamic error on each step. Further, the weights are again
modified with generalized second derivative for the current glob-
al error. Thus, the network has trained for the global behavior
rather than the individual local behaviors which represent the
good generalized behavior of the neural network. This iterative
process continues till the global error does not minimize for all the
presented input –output pattern pair of training set.

3. The more experiments of complete pattern and analysis are
still needed for completely verify the method. The complexity of
the algorithm should also analyze and compare with the other
methods. These can consider as the extended or future work.
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